Gram stains are inadequate for evaluating prepubertal children for gonorrhea and should not be used to diagnose or exclude gonorrhea. If evidence of DGI exists, gonorrhea culture and antimicrobial susceptibility testing should be obtained from relevant clinical sites (see Disseminated Gonococcal Infection).
These guidelines are limited to the identification and treatment of STIs in prepubertal children. Management of the psychosocial or legal aspects of the sexual assault or abuse of children is beyond the scope of these guidelines.
max barry company epub 15
Evaluating children for sexual assault or abuse should be conducted in a manner designed to minimize pain and trauma to the child. Examinations and collection of vaginal specimens in prepubertal girls can be extremely uncomfortable and should be performed by an experienced clinician to avoid psychological and physical trauma to the child. The decision to obtain genital or other specimens from a child to evaluate for STIs should be made on an individual basis. However, children who received a diagnosis of one STI should be screened for other STIs. History and reported type of sexual contact might not be a reliable indicator, and urogenital, pharyngeal, and rectal testing should be considered for preverbal children and children who cannot verbalize details of the assault (1438,1449). Factors that should lead the physician to consider testing for STIs include the following (1449):
The risk for a child acquiring an STI as a result of sexual abuse or assault has not been well studied. Presumptive treatment for children who have been sexually assaulted or abused is not recommended because the incidence of most STIs among children is low after abuse or assault, prepubertal girls appear to be at lower risk for ascending infection than adolescent or adult women, and regular follow-up of children usually can be ensured. However, certain children or their parent or guardian might be concerned about the possibility of infection with an STI, even if the health care provider has perceived the risk to be low. Such concerns might be an indication for presumptive treatment in certain settings and might be considered after all relevant specimens for diagnostic tests have been collected.
In the United States, dietary supplements are classified as food products, not drugs, and there is generally no mandate to register products with the FDA or obtain FDA approval before producing or selling supplements to consumers. However, if a dietary supplement manufacturer is making a claim about their product, the company must submit the claims to FDA within 30 days of marketing the product. Compare this, for example, with Canada where under the Natural Health Product (NHP) Regulations enacted in 2004 supplements must be reviewed, approved, and registered with Health Canada. The rationale for the U.S. model is based on a presumed long history of safe use; hence there is no need to require additional safety data.
A common question posed by athletes, parents, and professionals surrounding dietary supplements relates to how they are manufactured and perceived supplement quality. In several cases, established companies who develop dietary supplements have research teams who scour the medical and scientific literature looking for potentially effective nutrients. These research teams often attend scientific meetings and review the latest patents, research abstracts presented at scientific meetings, and research publications. Leading companies invest in basic research on nutrients before developing their supplement formulations and often consult with leading researchers to discuss ideas about dietary supplements and their potential for commercialization. Other companies wait until research has been presented in patents, research abstracts, or publications before developing nutritional formulations featuring the nutrient. Upon identification of new nutrients or potential formulations, the next step is to contact raw ingredient suppliers to see if the nutrient is available, if it is affordable, how much of it can be sourced and what is the available purity. Sometimes, companies develop and pursue patents involving new processing and purification processes because the nutrient has not yet been extracted in a pure form or is not available in large quantities. Reputable raw material manufacturers conduct extensive tests to examine purity of their raw ingredients. When working on a new ingredient, companies often conduct series of toxicity studies on the new nutrient once a purified source has been identified. The company would then compile a safety dossier and communicate it to the FDA as a New Dietary Ingredient submission, with the hopes of it being allowed for lawful sale.
When a powdered formulation is designed, the list of ingredients and raw materials are typically sent to a flavoring house and packaging company to identify the best way to flavor and package the supplement. In the nutrition industry, several main flavoring houses and packaging companies exist who make many dietary supplements for supplement companies. Most reputable dietary supplement manufacturers submit their production facilities to inspection from the FDA and adhere to GMP, which represent industry standards for good manufacturing of dietary supplements. Some companies also submit their products for independent testing by third-party companies to certify that their products meet label claims and that the product is free of various banned ingredients. For example, the certification service offered by NSF International includes product testing, GMP inspections, ongoing monitoring and use of the NSF Mark indicating products comply with inspection standards, and screening for contaminants. More recently, companies have subjected their products for testing by third party companies to inspect for banned or unwanted substances. These types of tests help ensure that the dietary supplement made available to athletes do not contained substances banned by the International Olympic Committee or other athletic governing bodies (e.g., NFL, NCAA, MLB, NHL, etc.). While third-party testing does not guarantee that a supplement is void of banned substances, the likelihood is reduced (e.g., Banned Substances Control Group, Informed Choice, NSF, etc.). Moreover, consumers can request copies of results of these tests and each product that has gone through testing and earned certification can be researched online to help athletes, coaches and support staff understand which products should be considered. In many situations, companies who are not willing to provide copies of test results or certificates of analysis should be viewed with caution, particularly for individuals whose eligibility to participate might be compromised if a tainted product is consumed.
Have the research findings been replicated? If so, have the results only been replicated at the same laboratory? The best way to know an ergogenic aid works is to see that results have been replicated in several studies preferably by several separate, distinct research groups. The most reliable ergogenic aids are those in which multiple studies, conducted at different labs, have reported similar results of safety and efficacy. Additionally, replication of results by different, unaffiliated labs with completely different authors also removes or reduces the potentially confounding element of publication bias (publication of studies showing only positive results) and conflicts of interest. A notable number of studies on ergogenic aids are conducted in collaboration with one or more research scientists or co-authors that have a real or perceived economic interest in the outcome of the study. This could range from being a co-inventor on a patent application that is the subject of the ergogenic aid, being paid or receiving royalties from the creation of a dietary supplement formulation, providing consulting services for the company or having stock options or shares in a company that owns or markets the ergogenic aid described in the study. An increasing number of journals require disclosures by all authors of scientific articles, and including such disclosures in published articles. This is driven by the aim of providing greater transparency and research integrity. It is important to emphasize that disclosure of a conflict of interest does not alone discredit or dilute the merits of a research study. The primary thrust behind public disclosures of potential conflicts of interest is first and foremost transparency to the reader and second to prevent a later revelation of some form of confounding interest that has the potential of discrediting the study in question, the findings of the study, the authors, and even the research center or institution where the study was conducted.
2ff7e9595c
Comments